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Abstract 
 

This study assesses Azerbaijan’s non-oil potential growth and its interplay with capacity utilization and 

inflation dynamics. Utilizing multiple estimation techniques, non-oil potential output growth is consistently 

estimated at around 5%. While short-term GDP growth exceeding the estimated level might suggest 

overheating, firm-level data suggest otherwise. Drawing on monthly survey data from enterprises across 

various industrial sectors covering the period of 2019–2024, we find that elevated growth does not always 

lead to inflationary pressures, especially when firms operate below full capacity. In such cases, capacity 

utilization can increase without a significant cost increase. The findings of this study emphasize the 

importance of incorporating capacity utilization metrics into inflation monitoring and highlight the need for 

policy responses in emerging economies with structural supply-side constraints. 
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1. Introduction 

Estimating potential output and identifying overheating risks are fundamental to the design of effective 

macroeconomic policies, particularly for emerging and resource-rich economies. Understanding both the 

long-term growth potential and the short-term cyclical dynamics of the Azerbaijan economy is crucial for 

formulating effective monetary and fiscal policies. This study provides estimates of the long-term growth 

potential of Azerbaijan's non-oil economy, which can be sustained without generating inflationary 

pressures, given the technological capabilities and resource constraints. While estimates of potential output 

illuminate the structural capacity of the economy, they do not fully capture short-term fluctuations that 

influence inflation dynamics. 

Using multiple methodologies such as the Hodrick-Prescott filter, the Kalman filter, and the Cobb-Douglas 

production function, this study estimates Azerbaijan’s non-oil GDP growth potential. The estimations show 

that the non-oil GDP growth potential is around 5%. The analysis further explores the impact of the short-

term output gap volatility, deviations from the potential level, on the inflation level. Findings reveal that 

when excess demand emerges, firms may increase capacity utilization without a proportional rise in 

marginal costs or labor expenses. This observation suggests that heightened demand does not necessarily 

translate into inflationary pressures, challenging the conventional interpretation of output gaps and capacity 

utilization rates as straightforward indicators of overheating. To investigate these complex interactions, the 

study analyzes the relationship between firm-level capacity utilization and labor market activity in non-oil 

industrial sectors. Granular survey data reveal sector-specific patterns and temporal fluctuations in capacity 

utilization, and their associations with labor adjustments and inflation signals. 

The results have significant implications for macroeconomic policy in Azerbaijan. The Central Bank of 

Azerbaijan’s primary objective is to ensure price stability, which requires carefully distinguishing between 

structural capacity constraints and cyclical overheating. Our results suggest that industries operating below 

full capacity, even at their natural utilization rates associated with stable growth, may still accommodate 

excess demand without triggering inflation. While potential output remains a critical benchmark for 

assessing excess demand, the transmission of demand pressures into inflation is influenced by additional 

factors, especially pricing strategies and labor market responses.  

In sum, this study contributes to the understanding of the interplay between capacity utilization, labor 

dynamics, and inflation in Azerbaijan’s non-oil sectors. By integrating firm-level data, econometric models, 

and theoretical frameworks, we provide evidence that can enhance the central bank’s ability to maintain 

price stability in a complex economic environment.  
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2. Literature review 

The accurate estimation of potential GDP is crucial, especially in the context of analysing excess demand. 

Since deviation of actual output from its potential level is commonly referred to as the output gap, which 

serves as a key indicator of demand pressures in the economy. Therefore, validating estimates of excess 

demand or supply conditions, one way to validate potential output estimates is by examining their 

implication for inflation dynamics. Theoretically, the Phillips curve suggests a positive relationship between 

excess demand and inflation, as excess demand puts upward pressure on marginal cost. 

In this regard, a widely used empirical specification is based on the “approximate proportionate relation 

between marginal cost and output” (Gali & Gertler, 1999, p. 201). When real GDP exceeds its potential 

level, signalling excess demand, businesses typically respond by expanding employment or extending 

working hours. This elevated demand for labor exerts upward pressures on wages, as firms compete to 

attract or retain workers. The resulting increase in labor costs raises unit labor costs, which in turn 

contributes to inflationary pressures. This relationship is typically formalized through a New Keynesian 

Phillips Curve: 

𝑚𝑐𝑖𝑡
𝑟 = 𝑘(𝑦𝑡 −  𝑦𝑡

∗)                  (1) 

where 𝑚𝑐𝑖𝑡
𝑟  dnotes real marginal cost, 𝑘 is the output elasticity of marginal cost, 𝑦𝑡 is the log output and 𝑦𝑡

∗ 

is the potential (or natural) level of output. Surprisingly, Gali and Gertler's (1999) analysis using the 

Generalized Method of Moments (GMM) for the U.S. found a negative correlation between the output gap 

and inflation, which contradicts conventional theory. This anomaly has been explored in heterodox 

economic literature. For instance, Lavoie (2022)  argues that firms generally operate below full capacity, 

allowing them to increase production without raising marginal costs when demand rises. As a result,  

inflation may not emerge when output exceeds historical norms, suggesting that the “true” potential output 

might differ from standard estimates.  

In contrast, Neiss and Nelson (2005) revisited the output gap's role using a more theoretically consistent 

framework. Their findings indicated that when the output gap is measured consistently with economic 

theory rather than via determined output, it reveals a significant and positive relationship with inflation in 

the U.S., UK, and Australia.  Similarly, Forbes, Gagnon, and Collins (2021) examined the role of slack—

defined as the deviation from full capacity—and found similar inflationary dynamics in their analysis of 31 

countries, reinforcing the centrality of the output gap in explaining inflation.  

Today, many central banks employ advanced techniques such as the Kalman filter to estimate the output 

gap and its relationship with inflation (Capek, Hlédik, Kotlán, Polák, & Vávra, 2003). Economists at the 
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Czech National Bank argue that such models are explicitly designed to estimate a measure of potential 

output that effectively forecasts inflation. “For example, an observation that inflation is rising makes it more 

likely that there was excess demand at the time (or a bit earlier, given the lags in the system)” (Capek, 

Hlédik, Kotlán, Polák, & Vávra, 2003, p. 14).  

While this approach aligns conceptually with the marginal cost method, it may lead to misestimation of 

potential output in the context of global business cycle synchronization. Specifically, when a country is 

sufficiently large to influence global commodity markets, domestic inflation may reflect external pressures 

rather than domestic excess demand. Natural resource production is subject to long supply lags, making 

global commodity prices highly sensitive to shifts in worldwide demand (Lavoie, 2022, p. 131). During 

periods of global business cycle synchronization, when rising global demand increase the demand for 

domestically produced goods in small open economies, empirical models frequently exhibit a strong 

correlation between demand and inflation (Benes, Hlédik, Vávra, & Vlãek, 2003). Adjustments are made 

for global commodity prices or imported inflation. In this context, when a small open economy operates 

below full capacity, inflation is not primarily driven by strong domestic demand but rather by rising global 

commodity prices resulting from heightened global demand (Yusifzada, 2024). 

Potential output can also be estimated using a production function approach, which assumes that potential 

GDP is independent of short-run output fluctuations (Serrano, 2019). However, Serrano critiques this 

approach, arguing that labor is rarely a binding constraint and that capital accumulation is predominantly 

shaped by demand trends through the supermultiplier mechanism. This perspective suggests that both 

cyclical fluctuations and long-term growth are fundamentally driven by effective demand, thereby 

challenging the assumption that potential output is fully detached from actual demand dynamics.  

Finally, potential output can be estimated using econometric model-based equilibrium approaches. These 

models aim to forecast an economy’s steady-state growth over the long run. However, like univariate filter 

and production methods, they rely exclusively on historical data; in other words, it is backwards-looking. 

As Serrano highlights, potential output is not fixed but may evolve in response to shifts in effective demand, 

particularly in environments where excess labor persists. 

Given the respective strengths and limitations of each methodology, as well as the underlying theoretical 

critiques, there is no universally accepted approach for estimating an economy's potential output. 

Consequently, many empirical studies adopt multiple methods and compare the resulting estimates to 

enhance robustness. In line with these practices, we estimate the potential output of Azerbaijan’s non-oil 

GDP using four available approaches: i) the Hodrick-Prescott filter, ii) the Kalman filter, iii) the Cobb-

Douglas production function, and iv) VAR-based growth forecasting model. 
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3. Data and Methodology 

3.1. Data 

This study employs a comprehensive dataset to estimate the potential growth rate of non-oil GDP. The data 

includes a range of macroeconomic indicators such as real GDP, capital stock, labor force, and total factor 

productivity (TFP), among others. Data were obtained from the State Statistical Committee of the Republic 

of Azerbaijan (SSCRA), the Central Bank, International Monetary Fund (IMF), covering the period from 

2003 to 2023. All variables are expressed in real terms to account for the effects of inflation.  

The non-oil real GDP is calculated by subtracting the value added from mining and taxes from the total real 

GDP.  Capital stock data includes both private and public investments, offering a comprehensive perspective 

on the economy’s productive capacity. Labor force data, including total employment, were obtained from 

SSCRA and have been seasonally adjusted to smooth short-term fluctuations. Total factor productivity,  

representing technological progress and efficiency gains, is derived as a residual from the production 

function by subtracting the contributions of labor and capital from real GDP. 

3.2. Methodology 

To estimate the potential growth rate of the non-oil GDP, this study employs a combination of well-

established econometric models and filtering techniques. Given the inherent complexity of capturing long-

term economic trends, multiple methods are integrated to ensure a comprehensive and robust assessment of 

potential output. Each method plays a distinct role in capturing both short-term dynamics and long-run 

trends. 

Specifically, the Hodrick-Prescott (HP) filter and the Kalman filter are applied to smooth the non-oil GDP 

data and extract its underlying long-run growth path by isolating cyclical variants from the structural 

component. The Cobb-Douglas production function is employed to provide a structural estimate of the 

potential output model by exploring the relationships among capital, labor, and total factor productivity. 

Finally, three Vector Autoregressive (VAR) models are used to capture the short-term interactions among 

key macroeconomic indicators, with the resulting forecasts informing long-run growth of the non-oil GDP. 

This study integrates a combination of univariate, multivariate, and structural models, each offering distinct 

advantages and encountering specific limitations. By adopting this multifaceted approach, we aim to capture 

both the short-term fluctuations and the long-run potential growth trajectory of non-oil GDP, thereby 

offering a robust and reliable estimate of the economy's productive capacity. In the following sections, each 

method is described in detail, with a focus on explaining its application and relevance to the overall study.  
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Table 3.1. Models utilized in this study 

Model type Model name Description 

Univariate models Hodrick-Prescott (HP) Filter 
A smoothing technique that separates the trend from 

cyclical fluctuations in GDP 

Multivariate models Kalman Filter 

Estimates potential GDP by analyzing the 

relationship between excess demand and inflation 

using the New Keynesian Quarterly Projection 

Model 

Structural models 

Cobb-Douglas Production Function 

Uses structural relationships between inputs like 

labor, capital, and productivity to estimate potential 

GDP. 

Structural VAR (SVAR) 

A multivariate model that captures the interactions 

between macroeconomic variables (e.g., output, 

inflation, unemployment). 

 

3.2.1. Hodrick-Prescott (HP) filter 

To estimate potential output, this paper employs the Hodrick-Prescott (HP) filter, a widely used technique 

in macroeconomic analysis for decomposing time series data into trend and cyclical components. The HP 

filter is particularly effective in extracting the long-term trend, which, in this context, represents the potential 

output, while separating out short-term fluctuations that correspond to the business cycle. In alignment with 

(Hodrick & Prescott, 1981)  

𝒎𝒊𝒏 (∑ (𝒚𝒕 − 𝒚𝒕
∗)𝟐𝑻

𝒕=𝟏
+ 𝝀 ∑ [(𝒚𝒕+𝟏

∗ − 𝒚𝒕
∗) − (𝒚𝒕

∗ − 𝒚𝒕−𝟏
∗ )]𝟐𝑻−𝟏

𝒕=𝟐
)           (2) 

where, 𝒚𝒕 denotes the actual observed non-oil output at time t, 𝒚𝒕
∗ represents the estimated potential (trend) 

output, and 𝝀 is the smoothing parameter that governs the trade-off between fidelity to the actual data and 

smoothness of the estimated trend. The first term in the objective function minimizes the deviation between 

actual and potential non-oil output, ensuring that the trend closely follows data. However, excessive 

responsiveness may lead to the trend capturing short-term swings associated with business cycles or 

temporary shocks, which are not reflective of long-term potential. The second term imposes a penalty on 

abrupt changes in the growth rate of the trend, ensuring smoothness and gradual evolution over time. 

Overemphasis on smoothness, however, can result in an overly rigid trend that fails to reflect genuine 

structural changes in the economy.  

The smoothing parameter 𝜆 plays a critical role in balancing this trade-off. A lower 𝜆 yields a trend more 

responsive to short-term movements, while a higher 𝜆 emphasizes long-run stability, potentially overlooking 
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significant shifts in output dynamics. Therefore, selecting an appropriate value of 𝜆 is essential for producing 

a credible estimate of potential non-oil output.  

Despite its limitations, including the choice of 𝜆, potential over-or under-smoothing, and endpoint bias that 

reduces reliability near the sample edges (Alichi, et al., 2017), the HP filter remains a widely used and useful 

tool for estimating potential output when applied carefully. 

3.2.2. Kalman filter 

As a more advanced filtering technique, this study employs the Kalman filter to estimate the potential output 

within the framework of the New Keynesian Quarterly Projection Model (QPM). As outlined in the 

literature review, the QPM links the IS curve with the Phillips curve to theoretically derive the output gap, 

which serves as a key determinant of inflationary dynamics (Yusifzada et al., 2024). The Kalman filter, a 

recursive algorithm, continuously updates estimates of unobserved variables such as potential GDP as new 

data becomes available (Meese & Rogoff, 1983). This dynamic adjustment capability enables the model to 

account for economic shocks and structural shifts, making it particularly effective for real-time 

macroeconomic analysis. By integrating historical relationships captured in the QPM model with incoming 

data, the filter produces updated estimates of potential output. 

A key advantage of the Kalman filter lies in its capacity to refine estimates over time, providing a more 

responsive and accurate assessment of long-term economic trends. As new data becomes available, the filter 

continuously adjusts its estimates, ensuring that potential output reflects the most current economic 

conditions. This adaptability makes the Kalman filter well-suited for macroeconomic forecasting in 

economies characterized by frequent structural changes. However, despite its strengths, the Kalman file is 

not without limitations. It is notably sensitive to model specification errors, meaning that inaccurate 

assumptions regarding the relationships among variables can result in biased estimates (Rodríguez & Ruiz, 

2012). Moreover, the method requires a substantial volume of high-quality data, and deficiencies in data 

may affect the accuracy of the output.  

3.2.3. Cobb-Douglas function 

Thirdly, we employed the Cobb-Douglas production function to estimate the potential output of the 

economy. The Cobb-Douglas function is a widely used structural model in macroeconomic analysis, 

capturing the relationship between output and key inputs, particularly capital and labor. The general form 

of the Cobb-Douglas production function (Cobb & Douglas, 1928) is given by: 

𝑌 = 𝐴𝐾𝛼𝐿1−𝛼                  (3) where 𝑌 

denotes non-oil GDP, while 𝐾 and 𝐿 denote capital and labor inputs, respectively, and 𝐴 represents total 
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factor productivity (TFP), capturing the efficiency with which these inputs are utilized. The parameters 𝛼 

and 1 − 𝛼 (𝑜𝑟 𝛽)  represent the output elasticities of capital and labor, with both parameters representing 

the contribution of each input to the production process.  

The Cobb-Douglas function relies on several underlying assumptions. Most notably, it assumes constant 

returns to scale, implying that a proportional increase in both capital and labor leads to an equivalent 

proportional increase in output. increase in output. This condition is satisfied when the sum of the elasticities 

equals one, which is defined as 𝛼+𝛽=1. Furthermore, it assumes that the output elasticities and TFP remain 

constant over time, implying that the percentage change in output due to a percentage change in capital or 

labor remains fixed. In addition to the theoretical limitations outlined in the literature review, the Cobb-

Douglas production function assumes constant output elasticities and exogenous total factor productivity, 

which may not hold across different economies or fully capture the impact of technological progress and 

productivity shocks.  Nevertheless, due to its simplicity and solid theoretical foundation within growth 

theory, the Cobb-Douglas function continues to be a widely used and valuable tool in macroeconomic 

research. 

3.2.4. Short-term non-oil GDP forecasting model 

We used the VAR model results presented in the working paper by Ramazanova and Qahramanov (2024), 

which are up-to-date short-run output forecasting models developed for the Central Bank of Azerbaijan 

(CBAR). The authors analyzed three VAR models in a two-stage approach to forecast non-oil GDP. In the 

first stage, several VAR specifications were estimated using different combinations of variables, and their 

forecasts were retained. These models were subsequently ranked based on forecasting performance, with 

those yielding the lowest root mean square errors (RMSEs) selected for further analysis. 

The generalized form of the VAR model employed in their study is as follows: 

𝑌𝑡 = c + 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 + ⋯ + 𝐴𝑝𝑌𝑡−𝑝 + 𝑢𝑡             (4) 

where 𝑌𝑡 is a vector of endogenous variables at time 𝑡, 𝐴1, 𝐴2 … , 𝐴𝑝 are coefficient matrices to be estimated, 

𝑝 denotes the number of lags, and 𝑢𝑡 is a vector of white noise error terms.  

The authors examined three specific VAR models. Model 1 includes real net exports, real retail trade 

turnover, real budget expenditures, M2, and electricity production. Model 2 modifies this by excluding real 

net exports and including the number of employees. Model 3 incorporates real industrial production, real 

household consumption, and real budget expenditures. Despite its strengths, a key limitation of the VAR 

framework is its backward-looking nature, which may reduce the reliability of out-of-sample projections. 
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4. Results 

4.1. HP Filter Results 

Figure 4.1. HP Filter Results 
 

Source: Author’s calculation 

Note: The red line in Figure A highlights the original real non-oil GDP series, while the grey lines represent 

the trends obtained from the HP filter with lambda values ranging from 100 to 1,000,000. 
 

The HP filter, which typically employs a smoothing parameter (lambda)  of 1600 (Choudhary, Hanif, & 

Iqbal, 2014), is frequently used to estimate deviations of actual GDP from its potential levels. However, 

given Azerbaijan’s distinct developmental context,  the applicability of this standard lambda value for the 

country. Due to cross-country differences in development stages and economic structures, the use of a 

single, default lambda may not yield optimal estimates across all economies (Choudhary, Hanif, & Iqbal, 
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2014). Estimating a precise, country-specific lambda for Azerbaijan, however, lies beyond the scope of this 

study.  

To  account for potential sensitivity in the choice of the smoothing parameter we employ a range of lambda 

values from 100 to 1,000,000. For each lambda, we compute the trend of real non-oil GDP in levels (Figure 

4.1.A). We then calculated the annual growth rate of each trend corresponding to the various lambda values. 

As illustrated in Figure 4.1.B, although different lambda values show varying potential growth rates in the 

past due to a structural break that occurred in 2016, they converge within a narrower range in recent years. 

This convergence, between 3.5 and 5% annual growth, can be interpreted as the potential growth rate range 

for the non-oil economy. 

4.2. Kalman Filter Results 

Figure 4.2. Kalman Filter Results With Structural Breaks 

 

Source: Author’s calculation 
 

As outlined in the literature review, our estimation of potential GDP via the Kalman filter is based on the 

theoretical relationship between excess demand and inflation. Specially, we seek to determine the level of 

potential GDP at which actual output begins to exert upward pressures on prices. However, analysis of 

analysis of non-oil GDP dynamics (see Figure 4.1.A and Figure 4.2.A) reveals evidence of structural breaks, 

which precludes the use of a single steady-state growth rate across the full sample period. To account for 

this, we introduce two structural breaks: the first following the global financial crisis, and the second after 

a significant oil price shock leading to the weakening of nominal effective exchange rate.  

Consistent with the framework discussed earlier, potential growth rates for each sub-period are calibrated 

to best capture the historical relationship between the output gap and inflation. Based on this approach, the 
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estimated potential growth rate is appromixately 11% prior to the gobal financial crisis and 9% for the period 

between 2009 and 2015. 

 Figure 4.3. Kalman Filter Final Results 

 

Source: Author’s calculation 
 

Following the identification of potential growth rates corresponding to structural breaks, our analysis turns 

to more recent economic developments. To estimate potential growth for the post-2016 period, we once 

again assess the relationship between inflation and the output gap. For this period, potential growth is 

assumed to lie within a range of 3% to 6%, based on recent estimates derived from the Hodrick-Prescott 

(HP) fileter ( see Figure 4.1). 
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As illustrated in Figure 4.3, the correlation between inflation and the output gap reaches 0.39 when potential 

GDP growth is set at 3%. Inceasing the assumed potential growth by one percentage point results in 

corresponding correlation coefficients of 0.41, 0.37, and 0.29, respectively. The highest correlation peaking 

is at a 4% potential growth, suggesting that Kalman filter-based excess demand estimates and observed 

inflation dynamics, particularly during and after the COVID-19 pandemic. Cobb-Douglas Production Function 

Results 

Figure 4.4. Growth rate of production function inputs 

 

Source: Authors’ calculation 
 

Figure 4.4 illustrates the growth trajectories of labor, capital, and non-oil GDP in Azerbaijan from 2006 to 

2023, highlighting the dynamics of the key inputs in the production function. Over this period, labor growth 

remained relatively stable, contributing only marginally to overall economic performance. In contrast, 

capital exhibited pronounced volatility, with significant investment surges, particularly around 2009, 

followed by a sharp decline after 2015. Non-oil GDP growth closely followed these fluctations in capital 

accumlation, underscoring the the sector’s strong reliance on capital inflows. The concurrent decline in both 

capital and non-oil GDP growth rates post-2015 suggests that diminished capital accumulation has become 

a binding constraint. These descriptive trends indicate that capital has been the dominant driver of non-oil 

GDP expansion in Azerbaijan, while the role of labor has remained relatively lower. 
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We utilize Cobb-Douglas production function to estimate the long-run growth rate of the non-oil sector of 

GDP. Following the Mankiw et al. (1992) we transform equation (3) into log-linear form and use it in 

ordinary least squares regression model. The functional form is expressed as follows: 

Log (𝑌) = Log(𝐴) + 𝛼Log(𝐾) + (1 − 𝛼)Log (𝐿)         (5) 

This transformation facilitates the estimation of the output elasticities for capital (𝛼) and labor (1-𝛼), where 

𝑌 denotes real non-oil GDP, 𝐾 represents the capital stock, 𝐿 is labor input, and 𝐴 captures total factor 

productivity (TFP). The estimated coefficients will subsequently be applied within the (Solow, 1956) 

growth model framework to compute the potential output of the non-oil sector. 

Table 4.1: Least squares results of the production function equation 

Variable Coefficient Std. Error t-Statistic Prob.   

LOG(non-oil capital stock) 0.54 0.18 2.97 0.01 

LOG(total employed) 0.46 1.45 0.32 0.75 

C 2.75 0.42 6.55 0.00 

 

According to the results of OLS regression presented in Table 4.1, the estimated coefficient for non-oil 

accumulated capital is 0.54. This implies that a 1% increase in non-oil capital stock is associated with a 

0.54% increase in non-oil real GDP. The coefficient is statistically significant, confirming that capital is a 

key determinant of non-oil GDP. This finding is consistent with the analysis that reinforces the conclusion 

that non-oil capital stock has been the primary engine of non-oil sector. In contrast, the coefficient for labor 

is 0.46, indicating that a 1% increase in labor input is associated with 0.46% rise in non-oil GDP. However, 

this relationship is not statistically significant, as indicated by a p-value is 0.75, consistent with the 

descriptive statistics. The insignificance of labor’s contribution may attributed to several structural factors, 

inclucing inefficiences in the labor market, suboptimal utilisation of human capital, or broader institutional 

weaknesses that constrain the direct influence of labor on non-oil sector output. The constant term, estimated 

at 2.75, and statistically significant, implies a robust baseline level of non-oil GDP even in the absence of 

variations in capital and labor. This intercept likely captures the effects of unobserved factors such as 

technological progress, institutional quality, or exogenous economic shocks that influence growth beyond 

measurable inputs.  
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To estimate the long-run potential of non-oil GDP, we employ the Solow growth model (Solow, 1956), 

which is a widely recognized neoclassical framework. This model attributes long-term economic growth to 

the contributions of labor, capital, and technological progress. In its steady state form, where the growth 

rates of capital per worker and output per worker are constant, economic growth is driven primarily by 

technological progress and population growth, rather than by continued capital accumulation. The steady-

state growth equation, derived from the Cobb-Douglas production function, is expressed as:  

𝑌̇

𝑌
=

𝑔𝑎

1−𝛼
+ 𝑛                  (5) 

, where 
𝑌̇

𝑌
 denotes the growth rate of GDP, 𝑔𝑎 is the growth rate of total factor productivity (TFP), 𝑛 

represents the labor growth rate. Assuming an average annual population (labor force) growth rate of 0.5%, 

which is based on recent trends, and an estimated TFP growth of 2.75%, the long-run non oil GDP growth 

rate is calculated as follows:  

𝑌̇

𝑌
=

2.75

1−0.54
+ 0.5 = 6.48               (6) 

The final result implies a potential non-oil GDP growth rate of 6.48%, with the TFP accounting for 5.97 

percentage points and labor growth contributing the remaining 0.5 percentage points. These findings 

emphasize the central role of technological progress in driving long-run growth, underscoring the 

importance of policy interventions that foster innovations, enhance knowledge diffusion, and promote the 

adoption of advanced production techniques. 

We alternatively estimated the potential non-oil GDP growth rate by referring to the literature, which 

suggests that the capital share typically ranges between 0.3 and 0.4, depending on a country’s stage of 

development (Oduor, 2010). For the purposes of our analysis, we adopted a capital share of 0.35, which 

aligns with values commonly observed in both developing and developed economies. To ensure constant 

returns to scale in the steady-state analysis of the Cobb-Douglas production function, the labor share was 

set at 0.65. Prior to calculating the alternative potential growth of non-oil output, we computed total factor 

productivity using the following equation: 

𝛥𝐴 = 𝛥𝑌/𝑌 − 𝛼𝛥𝐾/𝐾 − (1 − 𝛼)𝛥𝐿/𝐿                          (7) 

Where, 𝛥𝑌/𝑌 is the real growth rate of non-oil GDP; 𝛥𝐾/𝐾 is the growth rate of non-oil real capital stock 

(adjusted for depreciation); 𝛥𝐿/𝐿 is a c the growth rate of labor; 𝛥𝐴 is the growth rate of TFP calculated as 

a residual, estimated at 2.3% over 2003 and 2023 years. Using historical data for non-oil GDP, real capital 

stock, and labor force, we calculated the relative growth rates over the sample period. Using equation (6) 
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we derived a steady state growth rate of 4.0 per cent. This result represents the share of non-oil GDP growth 

that is not explained by changes in capital and labor inputs but stems from improvements in productivity 

and efficiency. 

The figure 4.5 illustrates the evolution of the TFP from 2006 to 2023, revealing periods of notable expansion 

and contraction. A pronounced upward trend is observed between 2006 to 2008, potentially driven by surges 

in oil revenues and corresponding spillover effects. This is followed by a sharp decline in 2009, likely 

resulting from the global financial crisis and falling oil prices. After a brief recovery in 2010, the period 

between 2013 to 2016 shows a steady downturn, reflecting again high oil revenues and structural challenges. 

From 2017 to 2021, TFP exhibits volatility. A notable recovery is evident in 2021-2022, potentially linked 

to post-pandemic economic recovery, but is followed by a deceleration in 2023. 

Figure 4.5: Total Factor Productivity dynamics over the sample period (can be changed) 

 

Source: Authors’ calculation 

 

4.3. VAR Model Results 

To estimate potential non-oil GDP, we now utilize short-run GDP forecast models based on VAR In this 

approach, we estimate long-run non-oil GDP using each of the three up-to-date short-run CBAR models. 

The convergence points of these models are selected to be the steady-state growth rate of non-oil GDP, 

yielding potential growth rates of 6.54%, 6.49%, and 5.51% (Figure 4.6). As previously noted, these models 

are inherently backward-looking, meaning their projections are strongly influenced by historical growth 

dynamics. As a result, the models forecast a higher steady-state growth rates compared to other estimations. 
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Figure 4.6. Long-run growth forecast 

 

Source: Author’s calculation 
 

5. Discussion and Policy Implications 

In summary, Azerbaijan's non-oil growth potential is estimated 4.5% based on the HP filter, 4% from the 

Kalman filter, 4.35% from the Cobb-Douglas production function, and 6.54%, 6.49%, and 5.51% from VAR 

models. Despite methodological differences, the estimates show a relatively close alignment, suggesting 

that recent non-oil GDP growth has stabilized around 5%. Looking ahead, and assuming no significant 

structural changes in the economy, it is reasonable to expect the economy to maintain a steady growth 

trajectory of around 5%.  

However, it is important not to differentiate between long-term potential growth and short-term capacity 

utilization. A growth rate that temporarily exceeds 5% does not automatically indicate overheating of 

economy or the emergence of inflationary pressures. As emphasized by Lavoie (2022), normal capacity 

utilization in equilibrium can fall below 100%, even in the presence of stable, long-run growth. This 

phenomenon is also observed in advanced economies. As shown in Figure 5.1, capacity utilization in the 

U.S. has declined by approximately 10 percentage points between 1960 and 2024, recently fluctuating 

around 77.5%. 

Therefore, when excess5 demand (defined as growth exceeding 5% in the case of Azerbaijan) occurs, firms 

may respond by increasing capacity utilization without incurring significant increases in marginal costs. 

Consequently, elevated demand may not necessarily lead to increased labor costs or inflation. 

 
5 We refer to excess demand as demand exceeding the levels normally observed. 
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To investigate this hypothesis in Azerbaijan, we examine the relationship between firm-level capacity 

utilization and labor dynamics using survey data. This monthly survey, conducted by CBAR between 2019 

and 2024, encompasses 105 enterprises across 10 industrial sectors.  

Figure 5.1. Capacity Utilization in the US 
 

 

Source: Author’s calculation 

With these industry-specific capacity utilization data, we conduct a descriptive analysis to explore the 

potential relationship between capacity utilization, labor, and inflation dynamics. As shown in Figure 5.2, 

signs of overheating were evident across different periods and sectors. Notably, prior to the post-pandemic 

inflation surge, sectors like chemicals, furniture manufacturing, plastics, and textiles displayed elevated 

capacity utilization levels, potentially causing inflationary pressures. During the inflation surge, sectors such 

as food processing, machinery, metallurgy, and building materials exhibited signs of overheating. Following 

this period, capacity utilization continued to increase in sectors like mineral products and electrical 

equipment. 
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Figure 5.2. Capacity Utilization, Labor, and Inflation Dynamics 
 

 

Source: Author’s calculation 
 

However, unlike the earlier industries such as chemistry, furniture, plastic products, and textiles, it is more 

difficult to attribute the recent increase in capacity utilization in certain sectors directly to demand pressures. 

This may reflect a heightened markup appetite in a high-inflation environment. Under such cases, elevated 

capacity utilization may not necessarily indicate stronger demand, but rather a strategic response by firms 

to raise prices and benefit from inflationary dynamics. 

Consequently, it is challenging to determine whether the heating in capacity utilization is a driver of inflation 

or is a result of it, especially when relying solely on heatmap analysis. To address this ambiguity, we employ 

more advanced techniques to examine the relationship between capacity utilization and inflation. Building 
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on theoretical foundations, we develop an economic heating indicator. This indicator takes the value of 1 if 

firms hire new workers in a high-inflation environment, defined as inflation exceeding 6%6, and 0 otherwise.  

With both the binary heating index and capacity utilization rates in place, we estimate the probability of 

economic overheated when capacity utilization exceeds its normal level. The normal capacity utilization 

rate is identified using a Random Effects Panel Probit model.7 As illustrated in the Figure 5.3, the model 

indicates that the economy becomes overheated when capacity utilization exceeds 93.5%.  

Figure 5.3. Capacity Utilization and Economic Heating 
 

 

Source: Author’s calculation 
 

However, unlike the earlier observed industries such as chemicals, furniture, plastic products, and textiles, 

the observed heating in these later sectors is more difficult to attribute directly to demand-side pressures. 

This ambiguity may stem from the firm’s stronger markup behavior in a high-inflation environment. In such 

cases, increased capacity utilization may not reflect heightened demand, but rather a strategic inclination by 

firms to raise prices and exploit inflationary conditions.  

Accordingly, distinguishing whether the observed heating in capacity utilization is a cause or consequence 

of inflation becomes challenging when relying solely on descriptive tools such as heatmaps. This insight 

holds important implications for policymaking, especially in conditions when the primary objective of the 

central bank is to ensure price stability rather than to achieve. If industries are operating below their full 

 
6 The 6% rate is considered high as it represents the upper bound of CBAR’s inflation target corridor. 

 
7 Since the primary focus of this paper is on estimating potential output, we do not provide specific details about the panel probit 

model here, but they are included in the appendix. While the model is used to explore the relationship between capacity utilization, 

and inflation, it does not directly address the central research question of determining Azerbaijan's potential growth rate. 
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capacity, even at the natural capacity utilization rate associated with stable growth (approximately 5%), 

there may be room to accommodate excess demand without triggering inflationary pressures. While 

potential output remains a key metric for evaluating excess demand, the extent to which such demand 

translates into inflation depends on factors beyond the conventional output gap, as evidenced by capacity 

utilization dynamics. This relationship underscores the need for further investigation in future research.  

6. Conclusion 

This study provides an assessment of Azerbaijan’s non-oil potential growth and its relationship with 

capacity utilization and inflation dynamics. Despite methodological differences, various estimation 

techniques converge around a non-oil potential growth rate of approximately 5%, suggesting recent growth 

trends are broadly sustainable under current structural conditions. 

However, interpreting growth above this level as an automatic signal of overheating can be misleading. Our 

assessment demonstrates that elevated growth does not necessarily translate into inflationary pressures, 

particularly when there is slack in capacity utilization. Firm-level survey data reveal that sectors often 

respond to excess demand by increasing utilization rates without proportionate increases in labor costs, 

especially when operating below their natural capacity. 

Moreover, the study highlights the complexities introduced by firm behavior in high-inflation environments, 

where increased capacity utilization may reflect pricing strategies rather than genuine demand-side 

pressures. The development of an economic heating indicator and the application of a panel probit model 

further support the conclusion that overheating is more likely when capacity utilization exceeds 93.5%, 

rather than being strictly tied to output growth rates.  

These findings underscore the importance of integrating capacity utilization measures into macroeconomic 

monitoring frameworks. For policymakers, particularly central banks focused on price stability, this 

approach is useful in assessing inflation risks and guiding countercyclical interventions. Future research 

should continue to explore sector-specific dynamics and incorporate real-time firm-level data to refine our 

understanding of capacity-driven inflationary processes in emerging markets. 
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Appendix 

A. Panel Probit Model 

Given the diversity of industrial dynamics across the 10 sectors examined in our study, it is  essential to 

account for individual-specific effects to avoid inefficiencies in  estimations (Amini, Delgado, Henderson, 

& Parmeter, 2012). To address this, we employ a random effects model, which allows for variation in 

individual-specific intercepts while maintaining a common relationship between the variables of interest. 

However, if there is correlation between unobserved individual-specific effects and the regressors, using a 

random effects model without controlling for endogeneity will lead to biased and inconsistent results 

(Amini, Delgado, Henderson, & Parmeter, 2012).  

To assess whether the random effects model is suitable for our data, we conduct a Hausman test, as shown 

in Table A.1. The test reveals no evidence to reject the exogeneity of unobserved individual effects, 

supporting the use of the random effects model for our analysis (Amini, Delgado, Henderson, & Parmeter, 

2012). 

Table A.1. Hausman test results for unobserved variable endogeneity 

Chi-squared Statistic: 4.6587 

p-value: 0.3241 
Alternative hypothesis: one model is inconsistent 

 

Since the null hypothesis cannot be rejected, the random effects model offers efficiency advantages (Amini, 

Delgado, Henderson, & Parmeter, 2012). Following Yusifzada (2024), we estimate a random effects panel 

probit model as follows: 

𝑃(𝑦𝑖𝑡 = 1|𝑋𝑖𝑡, 𝑋𝑖𝑡−1, … , 𝑋𝑖𝑡−𝑛, 𝛼𝑖) =  𝛷(𝑋𝑖𝑡𝛽0 +  𝑋𝑖𝑡−1𝛽1 + ⋯ +  𝑋𝑖𝑡−𝑛𝛽𝑛 +  𝛼𝑖)     (A.1) 

where 𝑦𝑖𝑡 is the binary outcome variable for individual i at time t, taking the value of 1 if  “heating” is 

observed,  and 0 otherwise. The term 𝑋𝑖𝑡−𝑛 represents the vector of explanatory variables for industry i at 

lag n, with 𝛽𝑛 being the corresponding coefficients. The term 𝛼𝑖 captures the individual-specific effect, 

while 𝛷 is the cumulative distribution function of the standard normal distribution, which transforms the 

linear combination into a probability between 0 and 1. 

The random effects specification incirporates unobserved heterogeneity across industries, modeled as  

(Greene, 2004): 

𝛼𝑖 =  𝜂 +  𝜇𝑖                (A.2) 
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where 𝜂 denotes the average effect across all industries, and 𝜇𝑖 represents unobservable individual-specific 

effects, assumed to be normally distributed with a mean of zero and constant variance 𝜎𝜇
2. 

Incorporating these random effects into the panel probit model, we have: 

𝑃(𝑦𝑖𝑡 = 1|𝑋𝑖𝑡, 𝑋𝑖𝑡−1, … , 𝑋𝑖𝑡−𝑛, 𝜂, 𝜇𝑖) =  𝛷(𝑋𝑖𝑡𝛽0 + 𝑋𝑖𝑡−1𝛽1 + ⋯ +  𝑋𝑖𝑡−𝑛𝛽𝑛 +  𝜂 +  𝜇𝑖)   (A.3) 

Regarding the model’s lag structure, we  exclude  lagged dependent variables to avoid  endogeneity  

concerns commonly associated with  dynamic panel probit model (Guevara & Navarro, 2015). Lagging the 

dependent variable can result in correlations with current independent variables, potentially leading to 

biased estimates (Carro, 2007). Instead, we focus on lagging independent variables from 1 to 4 periods, 

selecting those that are theoretically relevant. This approach allows us to capture dynamic relationships 

while minimizing endogeneity concerns. 


